Tetrahedron Letters 41 (2000) 3637-3641

Influence of structure on N–NO bond cleavage of aliphatic N-nitrosamines[†]

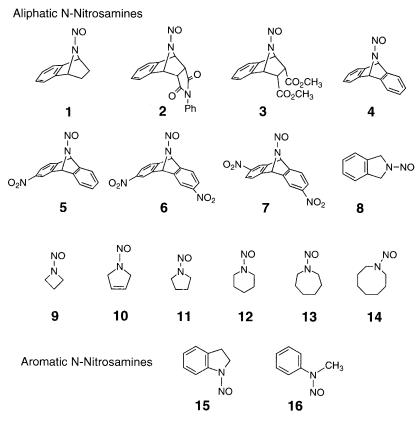
Motoko Miura,^a Shigeru Sakamoto,^b Kentaro Yamaguchi ^b and Tomohiko Ohwada ^{a,*}

^aFaculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan ^bChemical Analysis Center, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Received 17 February 2000; revised 9 March 2000; accepted 10 March 2000

Abstract

N-Nitrosamines can be considered as potential NO/NO⁺ donors. Previous studies demonstrated that aromatic *N*-nitrosoureas and aromatic *N*-nitrosamines can act as donors of NO. The relation of the structures of *N*-nitrosamines, in particular of aliphatic *N*-nitrosamines, to the characteristics of release and capture of NO or its redox forms remains unclear. In this paper we show that aliphatic *N*-nitrosamines of 7-azabicyclo[2.2.1]heptanes can undergo N–NO bond cleavage, and we also postulate that *N*-nitrosamines which enhance N–NO bond cleavage have low rotational barriers with respect to the N–NO bonds. © 2000 Elsevier Science Ltd. All rights reserved.


Keywords: nitrosamines; bicyclic heterocyclic compounds; bonds; NMR.

Nitric oxide (NO) has diverse roles in regulating many important physiological functions in a wide range of target tissues. ^{1,2} Nitrosonium ion (NO⁺), a redox form of NO, is proposed to be involved in the formation of *S*-nitrosothiols and *S*-nitrosoproteins in plasma which can give NO.^{3,4} The phenomena of NO/NO⁺ release and NO/NO⁺ capture are of interest, not least because NO/NO⁺ donors are candidate drugs for vascular tone regulation in endothelium^{5a,6} and for modulation of the activity of the central and peripheral nervous systems. ^{5b,6} *N*-Nitrosamines can be considered as potential NO/NO⁺ donors, ⁶ although some of these compounds are known to be carcinogens and mutagens. ^{7–11} Previous studies demonstrated that aromatic *N*-nitrosoureas and aromatic *N*-nitrosamines can act as donors of NO. ^{12–14} Although many structural studies of *N*-nitrosamines, including crystallographic analysis ⁷ and NMR studies ^{15–17} have been reported, the relation of the structures of *N*-nitrosamines, in particular of aliphatic *N*-nitrosamines, to the characteristics of release and capture of NO or its redox forms remains unclear. The aims of this paper are: (1) to show that aliphatic *N*-nitrosamines of 7-azabicyclo[2.2.1]heptanes can undergo N–NO bond cleavage; and (2) to propose structural features of *N*-nitrosamines that enhance N–NO bond cleavage.

^{*} Corresponding author. Tel/fax: +81-52-836-3407; e-mail: ohwada@phar.nagoya-cu.ac.jp (T. Ohwada)

[†] Dedicated to the memory of Prof. Kyosuke Tsuda.

We prepared a range of monocyclic aliphatic *N*-nitrosamines and also bicyclic *N*-nitrosamines, i.e. *N*-nitroso derivatives of 7-azabicyclo[2.2.1]heptanes, in order to assess the effect of the additional bridging in these structures (Scheme 1). Structually related aromatic *N*-nitrosamines were also prepared as reference compounds (Scheme 1).

Scheme 1. Aliphatic and aromatic N-nitrosamines in this study

N-Nitroso compounds are known to take planar structures, because the rotational barriers of the N–NO bond are evaluated to be of similar magnitude to those of amides. 17,19,20 This can be understood in terms of the resonance structures (Scheme 2), which represent the partial double bond character of the N–N(O) bond, in a similar manner to the N–C(O) bond in amides. Rotational barriers in solution, the free energy of activation (ΔG_c^{\dagger}), of the N-nitrosamines can be evaluated from the slow exchange peak separation ($\Delta \nu$) and the coalescence temperature (T_c) of the protons adjacent to the amino group in the 1H NMR spectra (Table 1). $^{15-17}$ The values (ΔG_c^{\dagger}) of the N-nitroso derivatives of 7-azabicyclo[2.2.1]heptanes (1, 2 and 3) are apparently smaller than those of the monocyclic five-membered N-nitrosamines (10 and 11). This result suggests a reduction of the resonance contribution of the N–NO bond, depicted in Scheme 2, in the N-nitroso derivatives of the 7-azabicyclo[2.2.1]heptane motif. The rotational barriers of the isoindoline 8 and other monocyclic N-nitrosamines (9 and 12–14) are also estimated to be more than 20–21 kcal/mol. The rotational barrier of N-nitrosoazetidine 9 is comparable to those of five-membered ring systems (10 and 11), the value being consistent with the previous result (20.5 kcal/mol). 15 The dibenzo derivatives (4, 5, 6 and 7) also have small rotational barriers (Table 1), suggesting a reduction of the resonance in the N–NO bond (Scheme 2).

N-Nitrosamines can produce NO through a homolytic cleavage of the N-NO bond, and also can form

$$: N - C \longrightarrow + N = C \bigcirc$$

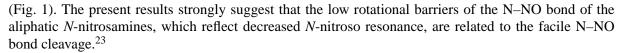
$$: N - N \longrightarrow + N = N \bigcirc$$

Scheme 2. Resonance models of planar nitrogen of amides and N-nitrosamines

Table 1 Rotational barriers of *N*-nitrosamines

compound	solvent a	Tc (°C) b	$\Delta G_c^{\ddagger}(kcal/mol)^c$
1	A	71.2	16.6
2	В	36.9	15.1
3	В	53.6	15.8
4	В	52.7	16.0
5	В	47.2	15.4
6	В	36.1	14.6
7	A	37.2	14.7 d
8	C	>170.4 e	>20.6
9	C	158.0	20.1
10	C	157.2	21.5
11	C	>170.1 e	>20.6
12	C	>170.1 e	>21.1
13	C	>170.0 e	>20.6
14	C	>170.1 e	>20.8

a) A: CDCl₂CDCl₂; B: CDCl₃; C: C₆D₅NO₂.


NO⁺ through a heterolytic cleavage of the relevant bond. ¹⁴ Release of NO or NO⁺ from *N*-nitrosamines in solution can be detected with the Griess method. ²¹ The visible absorption at 595 nm of the resultant red dye, formed upon a diazo coupling of the Griess reagents, allows evaluation of the amount of the relevant species (NO or NO⁺) formed by cleavage of the N–NO bonds of the *N*-nitrosamines (Fig. 1). Although the monocyclic aliphatic *N*-nitrosamines with five (**8**, **10** and **11**), six (**12**), seven (**13**) and eight (**14**)-membered rings, and even the four-membered *N*-nitrosoazetidine (**9**), are practically negative in the Griess assay, the *N*-nitroso derivatives (**2**, **3**, **4**, **5**, **6** and **7**) of the 7-azabicyclo[2.2.1]heptane motif are positive (weakly positive in the case of **1**). Some of these bicyclic derivatives are superior to the aromatic *N*-nitrosamines (**15** and **16**) and authentic NO donors (NOC12, NOC18 and SNAP)²²

b) Errors: \pm 1.0 °C. Temperatures were calibrated by means of a standard method.²⁴

c) Rotational barriers (ΔG_c^{\pm}) were obtained on the basis of the difference in chemical shifts of the two bridgehead proton signals and the coalescence temperature in proton NMR spectroscopy. Errors: $\pm~0.3~$ kcal/mol.

d) In solvent B; T_c : 37.9 °C; ΔG_c^{\ddagger} : 14.6 kcal/mol.

e) The maximum measurable with the apparatus.

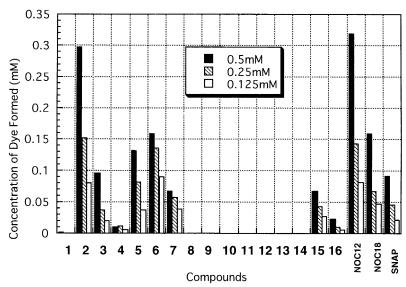


Fig. 1. Griess assay results, reflecting the ease of N-NO bond cleavage of the N-nitrosamines. After 5 h at 37°C²¹

In the Griess assay which reflects the ease of N–NO bond cleavage, the fused benzo group and the electron-withdrawing groups, such as an aromatic nitro group, the ester groups and the N-phenylimido group, seem to encourage N–NO bond cleavage of the N-nitroso derivatives of the 7-azabicyclo[2.2.1]heptanes (in Fig. 1: 2, 3>1; 5, 6, 7>4).

In summary, the N–NO bond of aliphatic *N*-nitroso derivatives of 7-azabicyclo[2.2.1]heptanes tends to be weak. The generality of these structural features of *N*-nitrosamines of 7-azabicyclo[2.2.1]heptanes, the relevant structural origins of the facile N–NO bond cleavage, and the detection of the species formed by N–NO bond cleavage are under investigation.²⁵

Acknowledgements

We thank Dr. Hidetoshi Hayashi, Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Nagoya City University, for help with the Griess assay.

References

- (a) Murad, F. Angew. Chem., Int. Ed. 1999, 38 1856–1868.
 (b) Ignarro, L. J. Angew. Chem., Int. Ed. 1999, 38, 1882–1892.
 (c) Furchgott, R. F. Angew. Chem., Int. Ed. 1999, 38, 1870–1880.
- 2. Pfeiffer, S.; Mayer, B.; Hemmen, B. Angew. Chem., Int. Ed. 1999, 38, 1714-1731.
- 3. (a) Stamler, J. S.; Jaraki, O.; Osborne, J.; Simon, D. I.; Keaney, J.; Vita, J.; Singel, D.; Valeri, C. R.; Loscalzo, J. *Proc. Natl. Acad. Sci. USA* **1992**, *89*, 7674–7677. (b) Stamler, J. S.; Singel, D. J.; Loscalzo, J. *Science* **1992**, *258*, 1898–1902.
- 4. Williams, D. L. H. Acc. Chem. Res. 1999, 32, 869-876.
- (a) Toda, N.; Okamura, T. J. Hypertension 1996, 14, 423–434.
 (b) Saders, K. M.; Ward, S. M. Am. J. Physiol. 1992, 262, G379–G392.

- 6. Advances in Phamacol.; Ignarro, L.; Murad, F., Eds. Nitric oxide, biochemistry, molecular biology, and therapeutic implications. Academic Press: New York, 1995; Vol. 34, pp. 1–516.
- 7. Loeppky, R. N.; Michejda, C. J. *N-Nitrosamines and Related N-Nitroso Compounds*; American Chemical Society Symposium Series 553, American Chemical Society: Washington, DC, 1994.
- 8. Oh, S. M. N.Y. F.; Williams, D. L. H. J. Chem. Soc., Perkin Trans. 2 1989, 755-758.
- 9. Castro, A.; Leis, J. R.; Pena, M. E. J. Chem. Soc., Perkin Trans. 2 1989, 1861–1866.
- Galtress, C. L.; Morrow, P. R.; Nag, S.; Smalley, T. L.; Tschantz, M. F.; Vaughn, J. S.; Wichems, D. N.; Ziglar, S. K.; Fishbein, J. C. J. Am. Chem. Soc. 1992, 114, 1406–1411.
- 11. Santala, T.; Fishbein, J. C. J. Am. Chem. Soc. 1992, 114, 8852-8857.
- 12. Tanno, M.; Sueyoshi, S.; Miyata, N.; Nakagawa, S. *Chem. Pharm. Bull.* **1996**, *44*, 1849–1852. The authors reported a detection of NO formed by N–NO bond cleavage of aromatic *N*-nitrosoureas.
- 13. Tanno, M.; Sueyoshi, S.; Miyata, N.; Umehara, K. Chem. Pharm. Bull. 1997, 45, 595-598.
- 14. Cheng, J.-P.; Xian, M.; Wang, K.; Zhu, X.; Yin, Z.; Wang, P. G. J. Am. Chem. Soc. 1998, 120, 10266-10267.
- 15. Cooney, J. D.; Brownstein, S. K.; Apsimon, J. W. *Can. J. Chem.* **1974**, *52*, 3028–3036. High rotational barriers of the N–NO bond (23 kcal/mol<) of different bicyclic *N*-nitrosamines were also reported.
- 16. Harris, R. K.; Pryce-Jones, T.; Swinbourne, F. J. J. Chem. Soc., Perkin Trans. 2 1980, 476-482.
- 17. (a) Mannschreck, A.; Münsch, H.; Mattheus, A. Angew. Chem. In. Ed. Engl. 1966, 5, 728. (b) Mannschreck, A.; Münsch, H. Angew. Chem., Int. Ed. Engl. 1967, 6, 984–985. (c) Oki, M. Applications of Dynamic NMR Spectroscopy to Organic Chemistry, Vol. 4; VCH Publishers: Deerfield, USA, 1985.
- 18. *N*-Acyl and *N*-sulfonyl amides of 7-azabicyclo[2.2.1]heptanes exhibited nitrogen pyramidalization: (a) Ohwada, T.; Achiwa, T.; Okamoto, I.; Shudo, K.; Yamaguchi, K. *Tetrahedron Lett.* **1998**, *39*, 865–868. (b) Ohwada, T.; Okamoto, I.; Shudo, K.; Yamaguchi, K. *Tetrahedron Lett.* **1998**, *39*, 7877–7880.
- 19. Gropen, O.; Skancke, P. N. Acta Chem. Scand. 1971, 25, 1241-1249.
- 20. Gdaniec, M.; Milewska, M. J.; Polonski, T. J. Org. Chem. 1995, 60, 7411-7418.
- 21. The Griess reagents contain a 10% aqueous solution of sulfanilamide in distilled water and phosphoric acid, and a 1% aqueous solution of *N*-(1-naphthyl)ethylenediamine dihydrochloride in distilled water. To a mixture of an equal volume of the above two solutions, a solution of an *N*-nitrosamine in DMSO was added to obtain a final concentration of the *N*-nitrosamine of 0.50, 0.25 and 0.125 mM, in which 10% (v/v) of DMSO in water was contained. After 5 h at 37°C, the absorbance at 595 nm was measured. The absorption increased time-dependently. Compounds **4**, **5**, **6** and **7** did not dissolve completely in the Griess reagents in the cases of 0.5 and 0.25 mM. See: Green, L. C.; Wagner, D. A.; Glogowski, J.; Skipper, P. L.; Wishnok, J. S.; Tannenbaum, S. T. *Anal. Chem.* **1982**, *126*, 131–138.
- 22. NOC12 (*N*-ethyl-2-(1-ethyl-2-hydroxy-2-nitrosohydrazino)ethanamine); NOC18 (2,2'-(hydroxynitrosohydrazino)bisethanamine), see: Hrabie, J. A.; Klose, J. R.; Wink, D. A.; Keefer, L. K. *J. Org. Chem.* **1993**, 58, 1472–1476. SNAP (*S*-nitroso-*N*-acetyl-DL-penicillamine), see: Field, L.; Dilts, R. V.; Ravichandran, R.; Lenhert, P. G.; Carnahan, G. E. *J. Chem. Soc., Chem. Commun.* **1978**, 249–250.
- 23. *N*-Nitrosoindoline (**15**) and *N*-methyl-*N*-phenylnitrosamine (**16**) exist as a single conformational isomer. See: Looney, C. E.; Phillips, W. D.; Reilly, E. L. *J. Am. Chem. Soc.* **1957**, *79*, 6136–6142. The rotational barrier of an aromatic *N*-nitrosamine, *N*-nitrosodiphenylamine, was reported to be 19.1 kcal/mol by: Forlani, L.; Lunazzi, L.; Macciantelli, D.; Minguzzi, B. *Tetrahedron Lett.* **1979**, 1451–1452.
- 24. Ammann, C.; Meier, P.; Merbach, A. E. J. Magn. Reson, 1982, 46, 319-321.
- 25. A preliminary study of the Griess assay in different pH media suggests that acidic conditions are required to enhance N–NO bond cleavage of the relevant *N*-nitrosamines.